盈彩网app技巧-在线登录平台网址入口下载 - 官网网站首页
盈彩网app充值2023-01-31 16:05

盈彩网app技巧

南佐“古国”:黄土高原上最早的国家******

  “宫城”祭祀区出土的带盖塞陶瓶 作者供图

  “宫城”区发掘现场 作者供图

  “宫城”祭祀区出土的白陶带盖簋 作者供图

  “宫城”祭祀区炭化水稻出土区域(局部) 作者供图

  【考古中国】

  我们常说中华文明五千年。什么是“文明”?现在一般所说的“文明”,多指对“Civilization”等西文词语的意译,可以理解为国家管理下物质、精神和制度创造的总和。“国家是文明社会的概括”,国家固然不等同于“文明”,但要称得上“文明”,则必须进入国家阶段。恩格斯曾提出国家产生的两个标志,一是“按地区来划分它的国民”,二是“公共权力的设立”。按地区划分国民指以地缘关系代替血缘关系,公共权力的集中体现则是“王权”。以此衡量,距今5100年左右的南佐都邑遗址,是黄土高原上最早出现国家社会的标志,为中华文明五千多年增添了又一实证。

  甘肃庆阳西峰西郊的南佐遗址,坐落在黄土高原第一大塬——董志塬上,传说中这里是黄帝部族的重要活动地域,也是以农业著称的周人祖先不窋的老家。南佐遗址发现于1958年,1984—1986年和1994—1996年有过两个阶段的发掘,从2021年开始第三阶段的发掘和调查、勘探工作,基本确认这是一处以仰韶文化晚期大型聚落为主体的遗址,遗址面积在600万平方米以上,可能有外环壕。聚落中部是由9座方形夯土台及其环壕围成的面积约30万平方米的核心区,核心区中部偏北是数千平方米的由“护城河”和夯土宫墙围成的“宫城”。“宫城”中心为主殿,“九台”之外还有多处居住区、夯土台、沟渠水利设施等遗存,出土了大量白陶、黑陶等珍贵遗物和大量水稻,从多个方面显现出早期国家和文明社会的气象。

  数千人数年建成的“国家级”工程

  南佐聚落不仅整体规模巨大,而且宫殿、夯土台、壕沟水利设施等的建筑工程量也很惊人。以聚落中部的“九台”来说,每座夯土台约40米见方,现存还有5~7米高,复原起来就像九座小金字塔。每座台子外周有宽约20米、深约10米的方形内环壕,内环壕的侧壁及底部有2~4米厚的夯土护壁,以防流水对黄土沟壁的侵蚀。我们推测环壕不仅有礼仪象征和防御作用,而且是与其他沟壕池沼连通的、有实际用途的大型水利工程。内环壕外还有一周宽约20米的外环壕,内、外壕总长度估计在5千米以上。“九台”环壕工程总土方量当在75万立方米以上,以当时的条件,大概需要5000人工作1年时间才能完成。如果以壕沟中挖出来的土夯筑“九台”,所费工时应当不比挖筑壕沟少。

  再看中央“宫城”区。有夯土围墙的长方形“宫城”东西宽约55米、南北长约67米,面积在3600平方米以上。“宫城”外有宽约15米、深10米多的“护城河”,它的两侧也有夯土护壁。加上“护城河”,整个“宫城”区占地面积就有8000多平方米。“宫城”中部偏北的主殿占地面积700多平方米,两个顶梁柱柱洞直径各约1.5米,中央火坛(火塘)直径3.2米——差不多是两个成年人的身长,规模之大前所未见。“宫城”东西两侧还各有一列侧室(侧殿)。所有这些宫墙、房墙都以版筑方法夯筑得十分坚实精整,窄处宽1~1.5米,最宽处可达5米,现存高度1.5~3.5米,是国内发现年代最早、规模最大、保存最好的夯土建筑遗存。

   “宫城”区建筑材料还包括土坯和最早的红砖,各处地面、墙壁都以石灰多层涂抹,甚至宫墙也不例外,这也是国内最早大范围使用白灰面装饰建筑的实例。我们可以想见,五千年前的南佐“宫城”,到处都是那么洁白明亮,和大家熟悉的北京紫禁城的色彩大不相同。我们估计,“宫城”区的建筑工程量应该不会少于“九台”区。

  经勘探和试掘,在“九台”外其他区域还发现有多处白灰面窑洞式房屋居住区、夯土台、壕渠水利工程等,加上可能存在的外环壕,整体建设工程量巨大。所有这些工程的主体部分理应是大体同时建造完成的,因此需要数千人劳作数年,这还不包括建筑工程的后勤保障在内。据此推测,南佐都邑人口或许有上万之众。也只有出现了强制性的区域“王权”,集合起国家力量,才有可能完成如此壮举。

  南佐所在的董志塬上还有一些面积为数十万平方米的聚落,出土的精美白陶、黑陶说明这些聚落的级别较高,可能是从属于南佐的卫星聚落。陇东甚至整个黄土高原,分布着大量仰韶晚期聚落遗址,但还没有第二处能够和南佐的规模相当。即便是秦安大地湾聚落延续到这个时期,规模也是远次于南佐。南佐聚落如此大的体量,“九台”、壕沟和宫殿建造所需要的强大组织调动能力,当是区域公共权力或者区域王权出现的最有力证明。南佐都邑大概是从周围迁入很多人口,集中规划建设而成,这必然会造成一定程度的血缘社会重组,形成具有地缘关系的早期国家组织。由此推断,当时在黄土高原地区应当已经出现了一个以南佐为核心的“古国”。

  中轴对称建筑格局的滥觞

  南佐都邑及“宫城”具有清晰的中心对称、中轴对称格局。“九台”及核心区位于聚落中心,“宫城”位于“九台”中心,主殿位于“宫城”中心,大火坛位于主殿中心。主殿坐北朝南,从主殿大堂后部两个顶梁柱中间,向南到主殿中门(共有三门)、“宫城”南门,构成大致南北向的中轴线,东西两侧的侧室(侧殿)和壕沟对称分布。

  再放大一些视野,“九台”中的北台就在这条中轴线的北端,东西两侧各有四台互相对称。“宫城”南墙外还有一道与其平行的外墙,类似后世的萧墙或影壁。外墙的门与“宫城”南门错开几米,两道墙之间的空间兼具瓮城功能,增强了“宫城”的封闭性和防御性。如此布局严整的多个圈层结构的南佐聚落,应是阶级秩序的礼制性体现,开后世古典建筑格局中轴对称的先河。

  我们推测“九台”和主殿应当主要是祭祀礼仪场所,“宫城”区部分侧室(侧殿)有可能作为首领人物的居所。我们注意到由窑洞式建筑组成的普通居住区基本位于“九台”以外,推测“九台”所围绕的30万平方米的核心区,可能整体都属于与祭祀相关的“圣区”或者贵族居住区。这是一种将神权和区域王权紧密结合在一起的、以王权为核心的建筑格局,凸显了王权至上,与西亚等地神庙和王宫分开且以神庙为核心的情况有显著区别。

  礼制出现和阶级分化

  南佐“宫城”区出土了白陶、黑陶、绿松石珠等贵重物品,成套的彩陶、朱砂陶、白衣陶、白泥堆纹陶,涂抹朱砂的石镞、骨镞,以及大量炭化水稻遗存,与普通居址区形成鲜明对照,显示当时不但有了较高水平的专业化分工,而且已出现礼制和阶级分化。

  白陶、黑陶在黄土高原罕见,但在南佐“宫城”区却发现不少,精致者陶胎最薄处仅有一两毫米,表面光滑细腻,有釉质光泽。如此轻薄精美的陶器,理应用快轮拉坯的方法制作,但我们一直没有在陶器上发现快轮旋转痕迹,制作工艺还是个谜。制作彩陶是黄土高原的传统,南佐有些彩陶表面有釉质光泽,有些彩陶成套出土,具有礼器性质。比如在主殿以东祭祀区就集中出土9件小口平底的彩陶酒瓶,每件高度都在60厘米左右,还都配有特殊的盖塞——可既盖又塞,以防止酒精挥发。南佐的朱砂陶、白衣陶、白泥堆纹陶等也都是具有祭祀礼仪性质的特殊器物。朱砂常涂在一种带有圆饼装饰的鼓类器物上,器表内外涂白衣的做法则见于簋、双腹盆、钵、缸、罐、瓮等很多器物上。白泥堆纹陶罐在其他遗址很罕见,但在南佐仅“宫城”东部祭祀区就出土数百件,大小不一,可能是成套的祭祀礼器。经测定,南佐大部分陶器烧造温度在1000℃以上,最高达1116℃,而一般新石器时代陶器烧造温度在700~1000℃之间。令人惊讶的,还有“宫城”东部祭祀区数以百万粒计的炭化水稻的发现,粟、黍数量极少,反之在“宫城”其他区则绝大多数都是炭化粟、黍。黄土高原农业本来就以粟、黍为主而少见水稻,以珍贵的水稻献祭神祇祖先,也应当是礼制的反映。

  南佐“宫城”区出土物还体现出与长江中游、黄河下游等地区的远距离联系。白陶、黑陶都最早出现于六七千年前的长江中游地区,南佐这两类陶器的出现有受到长江中游文化启示的可能性。尤其是南佐不少黑陶属于夹炭陶,这也是长江流域的古老传统。有意思的是,南佐有的黑陶仅覆盖陶器表面很薄一层,已能做到很好地控制渗碳层厚度,工艺技术和良渚文化最为接近,不排除与良渚文化有交流。据科技考古检测,南佐白陶所用原料为高岭土和瓷石,高岭土质量与后世制造白瓷的瓷土质量接近,瓷石原料可能产自南方,有些白陶上面的海洋结晶涂层原料可能来自海岱地区。黄土高原不产绿松石、朱砂,南佐的这两类原料有来自长江中下游地区的可能性。大量水稻不排除当地种植的可能性,但也有可能是从长江中游等地远距离贸易获得。可见南佐“古国”应当存在对远距离贸易获取稀缺资源的控制,这也是国家社会的特征之一。

  目前,南佐的考古工作才开了个头,很多谜团还有待后续解开。但据现有的发现就已经能够证明,中华文明和苏美尔文明、埃及文明一样,是诞生于五千年前的三大原生文明之一。

  (作者:韩建业,系中国人民大学历史学院教授、博导,南佐遗址考古发掘项目负责人)

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

中国网客户端

国家重点新闻网站,9语种权威发布

盈彩网app地图